How to cool a burn: a heat transfer point of view.
نویسندگان
چکیده
The objective of this work is to develop and validate a numerical model that can conduct a transient analysis of heat transfer and the corresponding damage in skin burns. Once this model is developed, an examination of the effect of cooling on reducing damage from skin burns is carried out. A finite element numerical model is used to simulate the conduction of heat and the transient progress of irreversible injury in the skin. The damage function of Henriques and Moritz is used to model the damage that occurs in the skin during the burn and cooling periods. Numerical results are presented that describe the heat transfer during a skin burn. Comparison is made between different burns: a high-temperature, short-duration burn (99°C for 1 second) and a medium-temperature, long-duration burn (80°C for 15 seconds). Cooling parameters such as the nature of the cooling fluid, the duration of the cooling period, the temperature of the coolant fluid, and the delay between the termination of the burn and the initiation of the cooling therapy are examined. The authors find that the most influential way to significantly reduce the damage from a burn is to immediately cool the burn. In addition, it was found that cooling a burn for a prolonged period of time or with very cold water cannot be justified from purely a heat transfer point of view.
منابع مشابه
Availability Analysis For Heterogeneous Nucleation In A Uniform Electric Field
Industrial demands for more compact heat exchangers are a motivation to find new technology features. Electrohydrodynamics (EHD) is introduced as a promising phenomenon for heat transfer enhancement mechanisms. Similar to any new technology, EHD has not been understood completely yet and requires more fundamental studies. In boiling phase change phenomena, nucleation is the dominant mechanism i...
متن کاملStudy of flow and heat transfer characteristics in a periodic zigzag channel for cooling of polymer electrolyte fuel cells
In this study, a periodic zigzag channel with rectangular cross-section has been used in order to obtain a high-efficiency system for cooling a polymer electrolyte fuel cell. An appropriate function of fuel cells and enhancement of their lifetime require uniform temperature conditions of around 80°C. On the other hand, due to volume and weight constraints, a low-density compact heat exchanger i...
متن کاملHeat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis
The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap he...
متن کاملThe Effect of Square Splittered and Unsplittered Rods in Flat Plate Heat Transfer Enhancement
A square splittered and unsplittered rod is placed in a turbulent boundary layer developed over a flat plate. The effect of the resulting disturbances on the local heat transfer coefficient is then studied. In both cases the square rod modifies the flow structure inside the boundary layer. As a result, a stagnation point, a jet and wake area are generated around the square rod, each making a co...
متن کاملEvaluation of Evaporative Cooling for Heat Transfer in the Condenser of Window-Air Conditioners
There is a demand for reduced power consumption in the vapor compression refrigeration cycle. Coefficient of performance of window-air conditioners considerably decreases and power consumption increases under very hot conditions. These problems have encouragecl studies aimed at improving the performance of window-air-conditioners by enhancing the heat transfer rate in the condenser. In this ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of burn care & research : official publication of the American Burn Association
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2012